Development and application of a multiroute physiologically based pharmacokinetic model for oxytetracycline in dogs and humans.

نویسندگان

  • Zhoumeng Lin
  • Mengjie Li
  • Ronette Gehring
  • Jim E Riviere
چکیده

Oxytetracycline (OTC) is a commonly used tetracycline antibiotic in veterinary and human medicine. To establish a quantitative model for predicting OTC plasma and tissue exposure, a permeability-limited multiroute physiologically based pharmacokinetic model was developed in dogs. The model was calibrated with plasma pharmacokinetic data in beagle dogs following single intravenous (5 mg/kg), oral (100 mg/kg), and intramuscular (20 mg/kg) administrations. The model predicted other available dog data well, including drug concentrations in the liver, kidney, and muscle after repeated exposure, and data in the mixed-breed dog. The model was extrapolated to humans and the human model adequately simulated measured plasma OTC concentrations after intravenous (7.14 mg/kg) and oral exposures (6.67 mg/kg). The dog model was applied to predict 24-h OTC area-under-the-curve after three therapeutic treatments. Results were 27.75, 51.76, and 64.17 μg/mL*h in the plasma, and 120.93, 225.64, and 279.67 μg/mL*h in the kidney for oral (100 mg/kg), intravenous (10 mg/kg), and intramuscular (20 mg/kg) administrations, respectively. This model can be used to predict plasma and tissue concentrations to aid in designing optimal therapeutic regimens with OTC in veterinary, and potentially, human medicine; and as a foundation for scaling to other tetracycline antibiotics and to other animal species. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:233-243, 2015.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiologically Based Pharmacokinetic (PBPK) model for biodistribution of radiolabeled peptides in patients with neuroendocrine tumours

Objective(s): The objectives of this work was to assess the benefits of the application of Physiologically Based Pharmacokinetic (PBPK) models in patients with different neuroendocrine tumours (NET) who were treatedwith Lu-177 DOTATATE. The model utilises clinical data on biodistribution of radiolabeled peptides (RLPs) obtained by whole body scintigraphy (WBS) of the patients.Methods: The blood...

متن کامل

Application of Recombinant Proteins for Serodiagnosis of Visceral Leishmaniasis in Humans and Dogs

Visceral leishmaniasis (VL) is a zoonotic disease caused by leishmania species. Dogs are considered to be the main reservoir of VL. A number of methods and antigen-based assays are used for the diagnosis of leishmaniasis. However, currently available methods are mainly based on direct examination of tissues for the presence of parasites, which is highly invasive. A variety of serological tests ...

متن کامل

A Model of Time-dependent Biodistribution of 153Sm-Maltolate Complex and Free 153Sm Cation Using Compartmental Analysis

Introduction Compartmental analysis allows the mathematical separation of tissues and organs to determine activity concentration in each point of interest. Biodistribution studies on humans are costly and complicated, whereas such assessments can be easily performed on rodents. In this study, we aimed to develop a pharmacokinetic model of 153Sm-maltolate complex as a novel therapeutic agent and...

متن کامل

DEVELOPMENT OF A PHYSIOLOGICALLY BASED TOXICOKINETIC MODEL FOR HUMAN EXPOSURE RISK ASSESSMENT OF METHYLENE DIPHENYL DIISOCYANATE(MDI)

Introduction: Given the lack of a developed physiologically based toxicokinetic (PBTK) model for human systemic exposure assessment of methylene diisocyanate (MDI) and prediction of its urinary metabolites, this study aims to develop a PBTK model for exposure risk assessment of MDI. Methods and Materials: In this study, to assess the potential exposure to the MDI, a PBTK model was constructed ...

متن کامل

A computer-aided framework for development, identification and management of physiologically-based pharmacokinetic models

The objective of this work is the development of a generic computer-aided modelling framework to support the development of physiologically-based pharmacokinetic models thereby increasing the efficiency and quality of the modelling process. In particular, the framework systematizes the modelling process by identifying the workflow involved and providing the required methods and tools for model ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of pharmaceutical sciences

دوره 104 1  شماره 

صفحات  -

تاریخ انتشار 2015